Topology Library Architecture

Kittel Austvoll

December 3, 2008

Contents
1 Introduction 1
2 Creating layers 1
2.1 Translating a spatial position to an id in a node vector 1
2.1.1 The quadtree structure 2
3 Connecting layers 3
3.1 Initializing the layers L. 3
3.2 Initializing the other connection variables 3
3.3 Thescope« e 4
3.4 Extracting nodes based upon probability 4
3.5 Determining the value of the weight, delay and probability pa-
rameters . . . oL 5
3.6 Connect thenodes 5

1 Introduction
The topology module code can be divided into two sections:

e Code used to create layers: CreateLayer

e Code used to connect layers: ConnectLayer

2 Creating layers

A layer is a special kind of subnet model. There are two kinds of layers; fixed
grid layers (layer.h/cpp) and unrestricted layers (layer_unrestricted.h/cpp). A
new 3D layer might also be added in the close future (layer_3d.h/cpp).

A layer is simply a list of node pointers (inherited from the compound class),
and a dictionary describing the layout of the layer.

2.1 Translating a spatial position to an id in a node vector

The primary purpose of the layer is to serve as a bridge between a 2D (or in the
future 3D) position and the node vector in the Compound class. The mapping
between a spatial position and an id in the node vector have to be done at run
time whenever needed.

The fixed grid layer solves this problem by wrapping the node vector into a
2D matrix. See Austvoll[1] for more about fixed grid layers.

The unrestricted layer uses a quadtree structure to map a position to an id
in the node vector. An unrestricted 3D layer would use an oct-tree structure to
do the same job.

2.1.1 The quadtree structure

A quadtree is a data structure used to simplify the process of doing spatial
searchs in a list of spatially distributed geographical data. The structure is
created by repeatedly splitting the 2D space where the data points reside into
four subregions (quadrants). The splitting is done whenever a quadrant contains
more than the maximum number of allowed nodes. A region in space having
a high density of nodes would thus contain more quadrants than a region with
less density. The number of allowed nodes is kept fixed.

The quadtree only needs to be constructed at the time of performing spatial
connections with the layer.

The oct-tree is the 3D equivalent of the quadtree.

Inserting layer nodes in a quadtree structure

for each node in layer
find quadrant leaf that overlaps node position
if quadrant leaf is full
split quadrant into 4 sub-quadrants
re-insert all nodes overlapping the split quadrant
else
insert node in quadrant node list

Making spatial queries to a quadtree structure

identify minimum bounding box of search query (1)
find quadrant leaves overlapping minimum bounding box (2)
for all nodes in returned quadrant leaves
if node overlaps exact region of search query
add node to result

(1) The minimum bounding box (mbb) is the smallest possible rectangular
region covering the search region. For a rectangular search region the mbb will
equal the search region. (2) More on this below.

Finding quadrant leaves overlapping minium bounding box

iterate through tree structure
if upper left corner of mbb have been reached
if lower right corner of mbb haven’t been reached (1)
add quadrant to result

(1) Also include quadrant overlapping lower right corner. (Comment) The
procedure above can in some cases include many quadrants that don’t overlap
the query region. It is then important to remember that the purpose of the
quadtree is not to find the exact data points overlapping the query region but
to narrow the number of data points down to a small number that can quickly
be tested individually. The algorithm above is described in Rigauz et al.[2].

3 Connecting layers
The layer connection process can be divided into two parts:

e Initialize the layers and the other connection variables

e Connect the layers

Creating a topological connection

initialize layers
initialize connection variables

for all nodes in driver layer (1)
find nodes in pool layer that overlaps scope region (2)
modify scope selection according to random settings
for all scope nodes
determine weight
determine delay
connect driver node and scope node

(1) The driver layer is the target layer for a receptive field connection and the
source layer for a projective field connection. (2) The pool layer is the opposite
of the driver layer.

3.1 Initializing the layers

A layer may consists of nodes at many different subnet depths and of many
different model types. Slicing of the layer based upon these two parameters is
done in this phase of the connection process. The desired nodes from the original
layer are inserted into a new temporary layer container. The temporary layer
container is used in the rest of the connection process. Information about node
depth is lost in this process.

Slicing a connection layer

for all nodes in layer
if node has desired modeltype and depth
add node to temporary node list

create copy of original layer with new node list

3.2 Initializing the other connection variables

The nature of a topological connection depends upon several parameters. Most
of these are implemented in the three file pairs parameters.h/cpp, region.h/cpp
and topologyconnector.h/cpp.

The region.h/cpp classes are used to set up the scope used to retrieve nodes
from the pool layer.

The topologyconnector.h/cpp classes are used to refine the scope node selec-
tion (according to the random conditions), set up the weight and delay of an
individual connection and to create the final connection.

The parameters.h/cpp classes are used by the topologyconnector.h/cpp classes
to set up the weight, delay and probability variables.

3.3 The scope

A topological connection is created by iterating through one node layer and
connecting every node in this layer to a scope or region in another layer.

The scope is defined by the region classes (region.h/cpp). There are two
kinds of region classes, one for use with fixed grid layers, and one for use with
unrestricted layers. We won'’t discuss the fixed grid layer scope any further here
(See Austvoll[1] for more information about this region class).

The unrestricted layers currently allow for rectangular, circular and dough-
nut regions. But additional region types can easily be added. The region objects
are both identified by their minimum bounding box and by the exact 2D shape
of the objects.

Find nodes overlapping an unrestricted region object

query quadtree for nodes overlapping scope
quadtree->find nodes overlapping minimum bounding box
quadtree->check if nodes also overlap exact region
quadtree->return nodes

return nodes

3.4 Extracting nodes based upon probability

Note: This procedure is under discussion and development.
Once an iterating node and a group of scope nodes have been identified
the nodes can be furthered processed based upon the parameters related to

randomness. There are currently two ways to use random numbers to make
refinements to the scope node selection.

e Limiting the set of scope nodes based upon a random divergent/convergent
connect scheme.

e Drawing a random number for each scope node to determine if the node
should be connected to or not.

The two procedures can also be combined.

Refining the scope region based upon randomness

if random divergent/convergent connect
while node limit is not reached
randomly draw a node from scope
if probability of connection is used
determine probability
if random number < probability
connect current scope node
else
throw node back in scope pool
else
for all nodes in scope
if probability of connection is used
determine probability
if random number < probability
connect current scope node

3.5 Determining the value of the weight, delay and prob-
ability parameters

The parameters classes are used to determine both the probability, the weight
and the delay of each individual scope node. The parameters classes usually
depend upon the relative position of the iterating and the scope node. Currently
three parameters classes exist; a class producing a constant value regardless of
node positions, a class producing values based upon a gaussian function of the
relative position of the connecting nodes, and a class used by the fixed grid layer
to produce a matrix of parameter values.

Retrieving the weight, delay or probability of a scope node

calculate relative position of iterating and scope node
parameters—->calculate parameters value based upon relative position
return parameters value

3.6 Connect the nodes

The last step of the connection process is to call the Network::connect(..) func-
tion. This is done by the TopologyConnector classes. A connection can either
be a receptive field connection or a projective field connection. A receptive field
connection will use the iterating node as a target and the scope node as source.
The projective field connection will use the iterating node as source and the
scope node as target.

Calling the right version of the Network::connect(..) function

if receptive field
connect scope node to iterating node with
determined weight and delay

else if projective field
connect iterating node to scope node with
determined weight and delay

References

[1] K. Austvoll: NEST Topology module, Norwegian University of Life Sciences,
Master Thesis (2007)

[2] P. Rigaux, M.O. Scholl, A. Voisard: Spatial Databases: With Application
to GIS, Morgan Kaufmann

