Neural query system: data-mining from within the

NEURON simulator

March 8, 2005

Running NQS

Neural Query System (NQS) is implemented within the NEURON simulation program.
This manual assumes familiarity with NEURON and with the hoc (aka oc) programming
language.

NQS utilizes a compiled NMODL file (vecst.mod) which must be linked into the
simulator with the following command:

nrnivmodl vecst
Then the program can be run with
nrngui ngs.hoc
ngs.hoc loads several other hoc files that are present in the directory.

In order to use NQS, it is necessary to populate the database with data. This can be
done most easily by reading in from a tab delimited file. The following sequence will set up
a new database and append data from the included file sample.asc.

objref nq

ng=new NQS(Q)

nq.rdcols("sample.asc")

Basic commands

Now we can play with the data in our database. Below the input is in type and the output
in italics

nq.size

3 x 202,202,202

Note that the lengths of each row are given explicitly. This is redundant for a

relational database structure where every column must be of the same length. In NQS,
however, columns of different length are allowed to permit storage of spike train times and

other data instances that yield variable length data. In such cases, there is no notion of
record and the usual record-based commands given below do not apply.
nq.gets shows column headers; nq.pr prints out part of all of the records.

nqg.pr(5)

COLA COLB COLC

16.45 15.95 0.04729

15.95 15.85 0.2355

15.85 15.27 8.091

15.27 12.91 0.53045

12.91 11.87 8.816

11.87 6.785 6.69

Note that this prints records 0 through 5; all record access is 0-offset denominated. One
can use e.g., nq.pr(-5) to see the last 5 rows or nq.pr(18,50) to see a slice or
nq.pr("COLA","COLB",5) to print out only selected columns.

One can append to the database as follows:
nq.append(53.7,42.1,8.609)
The query command is select() which takes a number of test operators (Table 1):

nq.select("COLA","()",100,200,"COLB",">",70,"COLC",">0")
26

The return value of 26 indicates that 26 records were selected in which the values in
“COLA” were between 100 and 200, values in “COLB” were greater than 70 and values in
“COLC” were positive.

Having run a select () command, additional commands will pertain to the selected
portion. For example nq.pr() will now print out only the selected records. The output will
be headed with “Selected:” to indicate this. nq.tog() will toggle back and forth between
the most recently selected records and the full database. nq.tog(1) will show which is
being currently accessed; nq.tog("DB") will make current the full database;
nqg.tog ("SELECTED") will make current the selected portion (“SELECTED” here can be
abbreviated down to 3 letters).

select () always applies to the full database. Other commands can apply to the full
db or to the most recently selected portion. select() also has operations that pertain to
strings (see Table 1).

For example, sp.gr("COLA","COLB") will graph the chosen columns against one
another. If we then sp.tog() and regraph with a different color we can see the selected
values against the background of the full database Fig. 1

Control of the graphics is through the GRVEC tool which is described elsewhere. In
brief, attrpanl (0) will bring up an attribute panel which will allow you to toggle to Mark
instead of line graph. The Color field will allow you to change the color from black (1) to
red (2).

nq.sort ("COLC") will sort in numerical order. nq.sort ("COLC",-1) will sort in

COLA
750 - we® o

o® o
500 |- ® 0o
»
e o
:
S o
e
250 .e® o
oo
®e® o %o o

7 . |

0 300 600 900
coLB

Fig. 1: Graph of COLA (ordinate) vs COLB (abscissa) from database nq. Full
db in black, selected values in red

reverse numerical order.
The spreadsheet command, e.g.,
nq.spr ("<SCR>. copy (<COLA>. c.mul (<COLB>) .add (<COLC>) .sub(3.1))")

will do vector operations (see NEURON’s VECTOR manual page for details) on the
columns, each of which is represented internally by a vector. The angle brackets indicate
use of these vectors — if COLA was used instead of <COLA> the operation would pertain
to a global numeric parameter named COLA. <SCR> references the scratch vector which
can then be access as nq.scr. Note that the columns can similarly be accessed
independently, e.g., COLA as nq.v[0], COLB as nq.v[1], COLC as nq.v[2]. nq.gets() gives
these index numbers next to the column names.

stat() will print out basic information about a column:

nq.stat ("COLA")
maxr="750.879; min=0; mean=263.274; stdev=253.994;

Note that this is done by applying these NEURON vector dot operators to the
underlying vector. This can be done selectively, e.g., nq.stat ("COLA","var") will return
the variance since “.var” is a built-in operator. Note that additional dot operators can be
readily added (compiled in) as needed — see e.g., xzero in vecst.mod which counts zero
crossings.

Similarly a user function that takes a vector and returns a value can be applied to a
column using applf (FUNC,COL).

Saving and reading to binary format are done with nq.sv("FILENAME") and
nq.rd ("FILENAME"). Reading a new database file (generally using a .ngs suffix) into nq
will overwrite the previous data, e.g.,

nq.sv("aa.nqgs") // saves to file aa.ngs

nq.rd("gfrpnq.nqgs") // reads file into ng, overwriting prior data

3

NAME | SYMBOL | action

Numeric

NEG <0 numeric less than 0

POS >0 numeric greater than 0

NOZ =0 numeric non-zero

GTH > greater than given value

GTE >= greater than or equal to given value
LTH < less than given value

LTE <= less than or equal to given value
EQU == equal to given value

NEQ I= not equal to given value

IBE [) within closed/open interval

EBI (] within open/closed interval

IBI [] within closed/closed interval
EBE () within open/open interval
String

SEQ =~ string identity

RXP o regular expression matching
Vector

EQV equal values in two columns
EQW value present in a given vector
User-defined

FCN user function(number) returns 1
FCS user function(string) returns 1

Table 1: Selection criteria available for NQS select

will read the model data saved from the MFP package pertaining to the ModelDB model of
CA1 pyramidal neuron: dendritic spike initiation, Gasparini et al 200.

Additional details for select and spr

The NQS select() command takes any number of arguments in sets. Each set consists of
a column name, an operator (Table 1) and one or two arguments depending on the
operator. Multiple criteria in a single select () statement are handled with an implicit
AND. A flag can be set to use OR on the clauses. A select() command that begins with a
"1 will return the complement of the selected rows. A command can also begin with "&&"
or "||" to return the union or respectively intersection of the selected rows with previously
selected rows (¢f. SQL UNION, INTERSECT, MINUS subcommands). Inner join for
related databases is done using the vector oriented EQW operator which will reference values
previously selected from a column of the same name in a separate database.

Although the NQS select () was not designed to replicate the agglutinative syntax of
SQL SELECT, much of this functionality can be replicated by combining NQS’s select(),

4

sort() and stat() functions.

Unlike SQL’s SELECT, whose selected values are printed by default, the NQS selection
simply stores tuples for further manipulation, such as printing, numerical operations or
graphing. Following a select, the user is by default accessing the selected tuples when
calling any subsequent commands (e.g., print, sort, etc.). The tog command toggles
back-and-forth between accessing the entire database and the most recently selected
component. As noted above, multiple select commands can be used to gradually focus on
data subsets. Alternatively, selected records can be exported as a new separate database
for further exploration.

The full package consists of over 50 commands. The important commands are shown in
Table 2. With the exception of select and spr, command arguments are straightforward.
spr short for spreadsheet, allows values from various columns to be combined using the
vector functionality available in NEURON. An example would be to calculate some
statistic involving compartment diameter, distance, and an external parameter:

ngs . spr ("<DATA>. copy (KDISTANCE>. c.sqrt.mul (paramA) .div (<DIAM>))")

The angle brackets are used to indicate the names of columns in the nqs database. In this
case a DATA column (which must have already been created) will get values calculated by
multiplying the square root of DISTANCE by a scalar parameter (paramA — not in angle
brackets) and dividing by DIAM. The “.c.” is NEURON vector notation indicating that
a copy of the vector will be used. This copying ensures that the DISTANCE column will
not itself be changed.

Review of general functionality

NQ@QS handles basic DBMS functionality including: 1. creating tables; 2. inserting, deleting
and altering tuples; 3. data queries. More sophisticated DBMS functionality such as
indexing and transaction protection are not yet implemented. DBMS commands in NQS
provide 1. selection of specified data with both numerical and limited string criteria ; 2.
numerical sorting; 3. printing of data-slices by column and row designators; 4. line, bar
and scatter graphs; 5. import and export of data in columnar format; 6. symbolic
spreadsheet functionality; 7. iterators over data subsets or over an entire database; 8.
relational selections using criteria across related databases; 9. mapping of user specified
functions onto particular columns.

Of all DBMS functions, querying is the most complex. A query language, although
often regarded as a database component and thereby denigrated as a data-mining tool, is a
critical aspect of data-mining. Structured Query Language (SQL), because of its
commercial antecedents, is less numerically oriented than is desirable for scientific query.
The NQS select command is designed to focus on numerical comparisons. Due to the
importance of geometric information in neuroscience, inclusion of geometric criteria will be
an additional feature to be added in further development of NQS.

FUNCTION | USAGE DESCRIPTION
append append (TUPLE) append tuple
apply apply ("FUNC","A","B",...) | apply FUNC to vectors for each COL
cp cp(DB) copy database
delect delect () move values from selected back to main database
(used after manipulating selected tuples)
£ill fi11("A",x1,"B",x2,...) fill COLs with corresponding values
fill("A",vecl,...) copy vecl to COL A
£fi11 (" A", "Z", ..) copy COL Z to COL A
fillin fillin("A",x1,"B",x2,...) | fill in-place after select(-1,...)
(avoids large data copies)
gr gr("A") plot COL A against sequential integers
gr("A","B") plot COL A (y) vs. COL B (x)
gr(...,[OPTIONS]) choose color, line type, superimpose on graph
map map ("FUNC","A","B",...) call FUNC with vectors for all COLs
pr pr("A","B",...[,MAX]) print selected COLs through tuple MAX
qt qt (&x1,"A",&x2,"B",...) iterate through tuples setting x1,x2 scalars
rd rd ("FILENAME") read database from file
remove remove (TUPLE) remove selected tuple
select select ([OPTIONS]) see text
select (-1, [OPTIONS]) select in-place instead of copying tuples
(-1 option avoids large data copies; see fillin)
sort sort ("COL") sort all tuples using numeric order of COL
spr spr ([COMMAND STRING]) see text
stat stat ("COL") print out mean,min,max,stdev for selected COL
stat ("COL", "min") print out min for selected COL
strdec strdec("A","B",...) declare that these COLs contain strings
SV sv("FILENAME") save database or selected tuples to file
tog tog (O switch between full database and selected

Table 2: Basic NQS commands

Implementation notes

The combination of vector-oriented numerical operations and database functionality is
comparable to MATLAB’S DATABASE TOOLBOX. However, the MATLAB product does
not provide an internal select function but constructs SQL queries which are sent to the
connected database.

The Neural Query System is written as a module for the NEURON simulation
system. Its implementation consists of two parts. First, interpreted code in NEURON'’s
hoc language implements the routines called by the user. Second, compiled C code
provides the array functions needed to allow select() and sort() to execute rapidly.
Compiled code also allows rapid vector-based calculations for data-mining. Further
vector-based algorithms written in C can be easily added. For example, a back-propagation
artificial neural network algorithm was ported from C code and made available as an ANN
tool that does not use the neural simulation engine of NEURON itself.

Each column of the database is represented internally by a vector (array) whose
ordered values represent the numerical values for the associated row in that column. String
functionality is provided by using the vectors to store numeric pointers to a linked list of
strings (List object in NEURON).

After parsing its arguments, the select command calls a C-coded slct command that
runs through all the rows of the columns of interest doing the appropriate comparisons and
building an index vector of rows matching all criteria (AND; matching any criterion for
OR). This index vector is then used to make a separate database of all columns for these
selected rows.

Although adequate in speed and size for current purposes, there are areas where the
current implementation falls short. First, all vectors are stored with double precision. It
would be desirable to reduce the precision, particularly for those vectors whose values are
being used as simple numeric pointers. These could be stored in single bytes, saving
considerable space. Since a single byte is still too large for flags and other low-information
identifiers, further consolidation could be achieved by storing information in bit-fields.
Bit-masking in C would still allow rapid matching to identifiers.

Second, there is not currently any mechanism for including a columns of objects. This
extension to an object-oriented database within the object-oriented NEURON simulator is
straightforward and will be added in the future. Third, and most importantly, although
NQS databases can be stored and re-read, the data being used currently is stored in
memory rather than on disk. When large databases are built this will require memory
swapping which is highly inefficient. Standard database design would optimize retrieval
from disk by using a variety of secondary indices to allow rapid access. Rather than
re-invent this particular wheel, it would be desirable to export and import to the formats of
full databases that can then do disk management for large databases. These external
databases could then be used to import data slices for further exploration with NQS.
Ideally this would be done by having NQS construct calls to the external SQL interpreter,
making external and internal queries seamless.

